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ABSTRACT 

Climate data fields represent essential tools for climate research. Most current interpolation procedures 

try to describe the influence of topography on spatial climatic variations by relating them directly to 

absolute elevation or by introducing simple relief variables such as exposition. In both cases this may not 

properly describe spatial climatic variations, particularly not those of precipitation. 

This paper describes a regionalisation procedure (REGEOTOP) that was applied to generate monthly 

spatial climatic data fields of temperature, precipitation and potential evapotranspiration (1951 - 1990) for 

East Asia at 0.25° resolution from a new complete climate data base. REGEOTOP proceeds in several 

steps, combining statistical and geostatistical methods. First, basic relief types are determined by 

application of principal component analysis to moving windows in a digital elevation model of the study 

area. Second, climatic variables are related to relief parameters by regression analysis with respect to 

basic relief types, location, and elevation. To account for small-scale variation of climate variables, 

geostatistical variogram analysis (step three) and interpolation (step four) are applied to the regression 

residuals. Finally, maps of regression estimates plus kriged residuals are calculated, for a total of 1440 

cases. 

The relief parameterization retains about 90% of the variance of a DEM in 10 - 18 principal components 

depending on input parameters. The REGEOTOP method is computationally expensive, but results justify 

the effort. Due to the thorough analysis in the REGEOTOP method and its application to the largest 

climate data base that exists outside China to date, the resultant maps provide a solid basis for GCM 

results verification or hydrological and agro-ecologic investigations and prognoses of East Asia. 

 

1. INTRODUCTION 

Despite intensive research for several decades (WMO, 1972) the interpolation of climatic data 

particularly in mountainous regions to obtain spatially distributed data sets has remained a problem. Even 

if multivariate or geostatistical interpolation methods are applied (e.g. Hutchinson, 1995a, Martinez-

Cobb, 1996) direct interpolation without inclusion of topographic data cannot capture the spatial climatic 

variability unless an unrealistically high station density is available. Including elevation information from 

a digital elevation model (DEM) in the regionalisation procedure (e.g. Fleming et al., 2000, Goovaerts 

2000, Hudson and Wackernagel, 1994, Hutchinson, 1995b, New et al. 2002) will only lead to improved 

results if elevation is actually describing the spatial variation of the climatic element within the study 

area. In most cases climatologically relevant processes such as orographic lifting of air masses are 

influenced by morphological aspects and relative elevation differences of the local topography rather than 

by absolute altitude.  

To account for the influence of the topography variables such as exposure, slope or distance and elevation 

difference to the highest topographic barrier have been used (see Prudhomme and Reed, 1998), 

particularly in the regionalisation of precipitation data. Ever since early attempts to employ topographic 

variables in the late 1940s by Spreen (1947) topographic variables have almost exclusively been designed 
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based on the individual scientist’s assumption of which topographic variables contribute particularly to 

the explanation of the spatial behaviour of the climate element in question. As such they have to be 

regarded as subjective as other, more important variables may have been overlooked and may not have 

been included in the analysis.  

This papers describes the application of an objective method for the determination of topographic 

variables based on principal component analysis (PCA) of a DEM. Stepwise multivariate regression, 

geostatistical analysis and interpolation (“kriging”) are then used to calculate monthly climate maps. In 

view of the importance placed by the scientific community on spatial climate data of China (Baker, 1999) 

temperature, precipitation and evapotranspiration maps have been derived for East Asia with particular 

emphasis on China. 

 

2. STUDY AREA AND DATA  

The study area includes the land area of the PR China (incl. Tibet) and adjacent areas of East, South and 

Central Asia (Fig. 1). The area represents about one tenth of the global land area with elevations ranging 

from -156 m (Turpan Basin) to 8848 m (Mt. Everest). The topography of that region is organized in three 

more or less concentric levels (Ren, 1985) with the lowest southern and eastern part consisting of coastal 

plains and rolling hill country below 1500 m, the intermediate level of basins and mountain ranges 

between 1500 and 3000 m and the highest level with the Tibetan Plateau and high mountain ranges such 

as the Himalayas above 3000 m. Summer precipitation south of app. 35° N is mainly derived from 

Southeast and Southwest monsoonal air masses and from extra-tropical westerlies to the north. In terms 

of annual precipitation some of the wettest (> 3500 mm/a, Taiwan Northeast coast) and driest (Northern 

Taklimakan Desert, < 20 mm/a) places in East Asia can be found within the study area. Similarly annual 

potential evapotranspiration (PET) totals vary from < 550 mm (Sichuan Basin) to > 2800 mm (Eastern 

Taklimakan Desert) while mean annual temperatures range from 24° C along the South China coast to –

5° C on the Tibetan Plateau.  

Time series data were available for 531, 672 and 196 stations (temperature, precipitation and PET, resp.) 

with the majority of the data covering the period from 1951 to 1990 (Fig. 2). PET was estimated with the 

Penman-Monteith method (Allen et al., 1998) using ET V1.0 software from Cranfield Univ. (Hess and 

Stephens, 1993). The major part of the time series were collected during field work in China with 

additional data added from the Carbon Dioxide Information Analysis Center (CDIAC, Kaiser et al., 1993, 

Tao et al., 1991) and the Global Historical Climate Network (GHCN, Version 2, Peterson and Vose, 

1997). Selected high altitude station data in Central Asia are by courtesy of H. Böhner, Göttingen 

University, Germany. Only time series that passed the Mitchell (1966), Buishand (1982) and Abbe 

(Schönwiese and Malcher, 1985) checks for homogeneity were included in the analysis. Elevation data 

was taken from GTOPO30, a DEM with global coverage at 30” resolution (app. 1 km) supplied by the 

United States Geological Survey (USGS, 2000). DEM data were clipped to the spatial extent visible in 

Fig. 1. 
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3. REGIONALISATION METHODOLOGY FOR CLIMATIC DATA INCLUDING RELIEF 

INFORMATION 

Parameterization of the topography as input to climate regionalisation procedures has mainly been in the 

form of variables that are considered to reflect properties of the topography that influence climate. 

Variables commonly adopted are average elevation, slope angle and aspect, elevation difference between 

station and neighbouring ranges, number of repeated occurrence of mountain chains and distance to the 

coastline (e.g. Basist et al. 1994, Hay et al., 1998, Hormann, 1985, Hughes, 1982, Hutchinson, 1995b, 

Konrad, 1996, Leblois and Desurosne, 1994, Parker, 1982, Prudhomme and Reed, 1998, Scherer, 1977). 

In most cases variables have been calculated for several aspect and / or distance classes. A different 

approach was taken by Daly et al. (1997) who evaluated the statistical distribution of slope conditions in 

rectangular windows.  

A multivariate stepwise regression with the topographic variables as independent predictors and the 

observed climate value as dependant variable is commonly applied to sort the topographic variables 

according to their explained variance. Deriving the topographic variables for each point in the whole 

study area and inserting them into the regression equation yields a climate field prediction. This approach 

assumes that the study area is either climatically homogenous or small enough so that the influence of 

effects not related to topography remains constant within the study area. Small scale gradients such as the 

influence of changing latitude or longitude are either neglected or accounted for by including longitude 

and latitude to the input variables (Schermerhorn, 1967, Hormann, 1985, Hudson and Wackernagel, 1994, 

Hutchinson, 1995b). This approach has the advantage that it may be customized to reflect any climate 

characteristics specific to the study area; however important features of the topography relevant for the 

spatial properties of the climatic element may be lost. 

In order to provide a more objective method to account for the influence of topography Benichou and 

Lebreton (1987) have proposed to parameterise topography with the help of a principal component 

analysis (PCA). For each element of the DEM a relative topography is obtained by subtracting its 

elevation from the elevation values of a square window (e.g. 5 by 5 or 11 by 11 elements) centred on that 

element. In the statistical context each element of the window is seen as a variable and each DEM 

element is seen as a case or object. After rearranging the results of each window as input data for the PCA 

each row of the input matrix represents one case and each column represents one variable (Fig. 3). 

The input matrix is subjected to a R-mode PCA (Richman, 1986). The relative topography in the domain 

can then be described as a linear combination of the resulting eigenvectors of the minor product of the 

input matrix weighted by their corresponding principal components (PC). Each eigenvector is interpreted 

as a ‘basic topography’ (‘paysage du base’, Benichou and Lebreton, 1987) representing different basic 

morphological elements such as domes or depressions, slopes, saddles or parallel ridges of different 

exposition or different orientation. With decreasing variance PCs explain increasingly complex 

topographic features that defy easy descriptions. This approach allows to decompose the topography 

around a station into the PCs of its relative landscape and the absolute altitude of the station itself. As PCs 

are not correlated with each other they offer an added advantage as predictors for a regression analysis.  

Stepwise multiple linear regression is then used to select significant predictors for the observed climatic 
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values (such as a monthly or annual mean value) from relative topographies decomposed into basic 

topographic components (PCs) and absolute altitude. Application of the regression equation to each 

element of the DEM then results in a predicted climate data field. The residuals between observed and 

predicted values are interpolated via a geostatistical method (‘kriging’ ) and added to the regression field 

to account for any remaining spatial variation. The regionalisation method has been termed ‘AURELHY’  

(‚Analysis using the Relief for Hydrometeorology‘, Benichou and Lebreton, 1987) and has been adopted 

by the French Weather Service (Météo France) as the standard for the preparation of climate maps. Peck 

and Brown (1962) initially introduced the idea to add an interpolated field of residuals to the results of a 

functional relationship between climatic processes and topography to better account for both topography 

related processes and any other remaining influences.  

Similar procedures that include a first step of detrending and a second step of kriging have been applied 

in climatological data analysis and termed ‚modified residual kriging‘ (Martinez-Cob, 1996, Prudhomme 

and Reed, 1999), ‚detrended kriging‘ (Holdaway, 1996) or ‚kriging with a guess-field‘ (Phillips et al., 

1992).  

 

4. REGEOTOP: ADAPTATION OF THE AURELHY METHOD FOR CONTINENT-SIZED AREAS 

The AURELHY method assumes that topography related influences are the major variable describing the 

spatial organisation of climate within the study area. Applying the method to a large region such as East 

Asia continental-scale effects like the latitudinal decrease of temperature or the influence of different 

monsoon air masses (Domrös and Peng, 1986) have to be accounted for. Segmenting the study area in 

smaller, climatically homogenous regions is not feasible due to the low station density in some of the 

individual regions which would result in samples too small for statistical significant regression solutions . 

Instead latitude and longitude have been added as additional predictors in the regression equation. The 

actual model area was restricted to the polygonal area shown in Fig. 2. Integrating stations outside of this 

area into the regression equations resulted in dramatically decreased correlation coefficients. 

Geostatistical interpolation alone was used to account for the spatial variability outside of the model area. 

Our approach has been termed REGEOTOP (Regionalisation with Geostatistics and Topography) and 

improves the original concept as it extends the applicability to larger areas as compared to the original. 

The computational steps of REGEOTOP are summarized in the Algobox (Algobox 1). Advantages of 

REGEOTOP are: 

a) Objective analysis of the local relief using principal component analysis allows us to take the 

complex relief of China into account; this is a vast improvement over the utilization of a small 

number of relief parameters. 

b) Integration of both small-scale (continental) and local (topographic) influences into the 

regionalisation procedure. 

c) The same relief analysis may be used for mapping all three climate variables temperature, 

precipitation and PET. 

REGEOTOP however is computationally expensive, but the results justify this effort. The necessary 

algorithm of our method has been programmed using IDL. 
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4.1 Theoretical considerations 

We consider a decomposition of the climate variable Vα into a location, elevation and relief component f, 
���������	��
	�
������� ����
������
������
��  

 

Vα (x, y, z, R) = f α (x, y, z, R) +  α (x, y, z, R)     (1) 

 

where α is an index for the climate variable (α = 1 temperature, α = 2 precipitation, α = 3 PET), 

x, y coordinates (x = longitude, y = latitude), z elevation, with (x,y,z) in a domain D in R³ and R relief 

information. Information on the variable model Vα is given in terms of climate observations at (discrete) 

stations: 

 

Vα (Pi) = Vα (xi, yi, zi, Ri) = fα (xi, yi, zi, Ri) + α (xi, yi, zi, Ri)    (2) 

 

where Pi is observation point (i ∈ J, i an index set), xi, yi, zi longitude and latitude coordinates and 

elevation and Ri is the local relief information in the neighbourhood of point Pi.  

The relief information, Ri, is obtained by localized PCA, carried out for the digital elevation model of 

East Asia. R is a symbolic “variable” , indicating the following procedure: 

 

z = z (x, y) is elevation in location (x, y).      (3) 

 

Elevation is decomposed into a regional component zr and a global component zg: 

 

z = z (x, y) = zg (x, y) + zr (x, y)       (4) 

 

For a window of size W × W and a location (x, y), zr is obtained by calculating differences of elevation 

values inside the window: 

 

zr (xi-j, yi-t) = z (xi-j, yi-t) – z (xi,yi)       (5) 

 

All zr values are rearranged into a matrix with each row containing consecutive zr values of a single 

window. 

Then a PCA of zr is done. The “R’ s”  are the basic topographies which are the principal components PC1, 

…, PCk, in the PCA. 

In practice, the regression is carried out for each variable and month and year: 

 

 

V α, β, γ     α ∈{temperature, precipitation, PET}, α = 1, temperature, α = 2, precipitation, α = 3,  PET, 
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      β ∈{1, 2,…,12}, 1 = January, 2= February, …, 12 = December, 

      γ ∈{1951,…, 1990}, year. 

The regression equation reads then: 

 

Vα, β, γ = a 1 x + a 2 y + a 3 z + a 4 PC1 + … + a (3+k) PC k    (6) 

 

and is carried out for 

 

Vα, β, γ (Pi) = a 1 x i + a 2 y i + a 3 z i + a 4 PC1 (i)+ … + a (3+k) PC k (i)   (7) 

 

with i = 1 … n stations Pi, (xi, yi, zi) station coordinates and elevation, a1, …, a3+k are the regression 

coefficients. To obtain Ri (relief decomposition), in the DEM raster of East Asia, the raster element 

containing the station Pi is identified, and the relief decomposition of this element is used. We call it Ri 

(with the same index, for simplicity). It has basic topographies PC1 (i), … , PCk (i), k is as in Table 1 (eg. 

k = 18). 

For each (α, β, γ) , regression analysis with x, y, z dependant and the basic topographies are carried out 

and the residual ε α, β, γ (x, y, z, R) is obtained.  

 

4.2 Practical considerations 

The information that is retained in the principal components of the relief parameterization depends both 

on the resolution, R, of the input DEM and of the size of the moving window, quantified here by the 

parameter W for a rectangular window of the size W × W grid nodes. Decreasing R while keeping W 

constant covers a larger area but analyses a smoothed topography thereby loosing information of large 

scale topographic features. Keeping R high and increasing W to counteract this effect leads to large data 

matrices that are difficult to handle: a combination of R = 300”  and W = 11 results in more than 47 

million elements.  

Topographic features can assert a considerable influence on precipitation even at large distances as the 

condensation level of an air mass is shifted in ever increasing altitudes by the repeated crossing of 

mountain ranges (Fliri 1967). On the other hand several authors (Benichou and Lebreton, 1987, Konrad, 

1996, Prudhomme and Reed, 1998, Scherer, 1977 and Konrad 1996) have noted that correlations between 

topography and precipitation begin to decrease at DEM resolutions of less than 5 to 10 km (app. 150”  to 

300” ). To evaluate the effects of different combinations of R and W four DEMs at resolutions of 150” , 

300” , 600”  and 1200”  calculated from the original GTOPO30 were tested with window sizes from 5 to 11 

pixels. 

As a result of the principal component analysis (see Table 1) 10 to 18 PCs are needed to account for more 

than 90 % of the variance of the whole DEM, depending on the selected values for R and W. With 

increasing DEM resolution more PCs are needed to explain the finer topographic detail which can be 

resolved at higher resolutions when a larger window size is selected. If PCs are omitted that contribute 
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only marginally (< 1%) to the total variance between 78% to 91% of the DEM can be explained by 12 to 

18 PCs.  

In order to visualise the resulting basic topographies the eigenvectors are arranged according to the 

original location of the variables in the window (Fig. 4). Mapping the PC scores demonstrates the relative 

contribution of the individual basic topographies to the topography of the study area (Fig. 5). The first 

principal component, PC1, identifies the locations of isolated mountain massifs or depressions with such 

prominent examples such as Mt. Everest or Daulaghiri. The second principal component, PC2, and the 

third, PC3, describe exposition by marking linear structures which trend North-South or East-West, 

respectively. The fourth principal component, PC4, represents a complex structure consisting of parallel 

ridges and depressions at a 110° angle and identifies features that are related to prominent geological 

structures that occur especially in the central mountain ranges of eastern China. Different combinations of 

R and W display different levels of detail but have a similar spatial distribution of basic topographies. 

As the range of influence of the topography on the regional climate is unknown trial runs with different 

combinations of R and W for different months were conducted for all three climate elements. Variation of 

selected predictors, their regression coefficients and explained variances were high which indicates that 

the method easily detects the variable influence of the changing seasonal and interannual characteristics 

of the air masses in response to topographical forcing. No combination of R and W however resulted in a 

clearly superior result. Despite its relatively low ranking in terms of explained DEM variance a 

combination of R = 300”  and W = 11 was selected as it gives a high spatial resolution without being 

computationally too expensive. At this DEM resolution the actual size of a moving window with W = 11 

corresponds to app. 300 km, similar to half ranges of precipitation coherence as given by Böhner (1996) 

for Central Asia.  

To assess the temporal variation in detail the above described regression was applied to monthly 

temperature, precipitation and PET data for each year in 1951 to 1990 (a total of 1440 data sets; 12 

months × 40 years × 3 climate elements). Hence analysis of the spatial variability and kriging is preferred 

for each of the 1440 data sets also. 

 

5. GEOSTATISTICAL EVALUATION AND MAPPING OF RESIDUALS 

Geostatistics is applied here to the residuals of the regression, obtained as described in the previous 

section. Residuals may show large values as some of the regional gradients do not always follow a linear 

relationship as assumed when applying a linear regression. Precipitation gradients in the mountains of 

Southwest China have been shown to exhibit up to 3 maxima at different altitudes (Thomas, 1997). The 

high spatial variability of the residuals necessitates an interpolation, we utilize ordinary kriging here. The 

kriging method is explained in Herzfeld (1992). 

In the geostatistics part, variography and ordinary kriging are applied to ε α, β, γ (x, y) in R². The residual 

ε α, β, γ (x, y) is also a regionalized variable. 

In kriging, the following two steps are carried out: 

1. analysis of spatial structure of the variable (variography) 

2. estimation of the variable, using results from the variography 
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In our application, the variable is the residual ε = ε α, β, γ , which depends on (x, y, z) and the relief-

parameterization R, 

 

ε α, β, γ  = ε α, β, γ (x, y, z, R)      (8) 

 

Program UNIKRG (Herzfeld 1990) is used in the estimation; program VARIO3D is used in variogram 

calculation and analysis. 

For geostatistical interpolation using ordinary kriging, the experimental variogram is fitted by a 

variogram model, which needs to satisfy certain mathematical conditions to assure that the system of 

linear equations needed by the ordinary kriging system has a unique solution. Spherical and Gaussian 

models have proven both mathematically correct and practical. 

For each of the 1440 cases, variograms were fitted by hand. Fitting of model parameters “ by hand”  is 

more robust than an automated process (see also Chilès and Delfiner, 1999). Here, fitting by hand 

(following the same objective procedure for each variogram) was necessary because of the high monthly 

and interannual variability of the variograms. Examples of the 1440 variograms are given in Figs. 6, 8 and 

9. 

In the calculation of the exponential variograms, spherical distances of the stations were used (ie. 

geographical coordinates were converted) otherwise large errors occur, due to the size of East Asia. A 

unit lag of 50 km was used. Because the residuals are free of large-scale trends with respect to the effects 

of localized topography, global variograms were calculated. Naturally, the variograms of the residuals 

show less variability than the variograms of the climate variables. 

Nevertheless, significant differences exist between variograms of individual years; in particular 

precipitation follows different patterns throughout the year. The month of July is selected as an example 

for the monsoon season months, other months show similar variability. For instance, the years 1979 – 

1980 exhibit contrasting patterns: in July 1979, precipitation occurred fairly even throughout the study 

area; whereas in July 1980 large regional differences in precipitation were observed. Hence, in the 

variogram of 1980 (and similarly in 1981) precipitation decreases more rapidly with distance than in the 

variogram of July 1979, the range is shorter in 1980 than in 1979 (Table 2, Fig. 6) 

From a synoptic view, the model forms allow implications of dominant weather patterns, characterized by 

differences in homogeneity of air masses and resulting differences in precipitation types such as mostly 

advective vs. convective precipitation. 

Months with precipitation patterns as in July 1979 are, in general over 1951 – 1990, infrequent. The range 

as a characteristic distance describes the maximal distance over which (monthly) precipitation events are 

spatially correlated. This is a variable of considerable climatologic interest; the range is generally 1000 

km – 1200 km for that month of the year. There is a seasonal dependence, with a maximum during the 

rainy season, at this time; the interannual variability is also highest (Fig. 7a). 

Minimum values in January and the maximum in October are not typical but depend on years with most 

unusual range values. However the occurrence and frequency of years with unusual precipitation events 

may indicate a tendency for climatic change. 



 9 

Variation of temperature residuals (Fig. 8), exemplified again for July, exhibit a lower interannual 

variability and a lower spatial variability than precipitation variograms. The temperature has a large range 

(> 2000 km) as temperature is a variable with spatial correlation over larger distances (Fig. 7b). 

Interannual variability is about the same for each month of the year – this is also expected because of the 

more constant spatial character of temperature. 

Variograms of PET residuals are given in Fig. 9. They are noisy because observations were lacking at 

several stations prior to 1980, and because of problems in calculating PET. The range of PET (Fig. 7c) is 

similar to that of precipitation and the variograms show a decline of spatial correlation over relatively 

short distances – more similar to precipitation and in contrast to temperature. This is natural as both PET 

and precipitation are directly, if inversely related to the occurrence of clouds. The seasonal dependency of 

the range parameter for PET however is similar to that of temperature with high range values in summer. 

In a simplified look, the spatial variability of PET shares some characteristics with that of temperature 

owing to their joint dependence on seasonal sunshine variation and some characteristics with precipitation 

owing to their correlation with cloudiness influenced by large-scale topography. 

 

5.1 Kriging and maps 

In practice, a value for each raster element was obtained using the regression equation, then kriging was 

applied for every grid node to estimate the residual. Stations in areas outside of China were also included. 

Apart from geographical considerations, this eliminates edge effects for the area of China itself. In 8 of 

480 cases, regression for PET data was not possible and consequently the maps for these months were 

calculated using solely geostatistics. An example of the regression result, kriging of residuals and of the 

final map is given in figure 10. 

Because calculation of the residuals with 300”  resolution proved to be computationally too costly, the 

final maps were calculated for a resolution of 900”  = 0.25°. At this spatial resolution morphological units 

such as large river valleys or intramontane basins that influence local climate and are important features 

for studies of regional ecosystems or hydrological research are still portrayed.  

 

6. RESULTS  

It has been demonstrated that a PC-based parameterization of the topograpy of East Asia is able to 

explain more than 90% of variance of the input DEM data. The spatial arrangement of basic topographies 

is consistent with a qualitative interpretation of the main topographic features of the East Asian continent. 

In case studies of contrasting mountain ranges (Massif Central, France, Black Forest, Germany and Tahiti 

islands, Central Pacific) similar results were obtained by Benichou and Lebreton (1987), Klein (1994) and 

Wotling et al. (2000) who reported that about 70 - 90% of the original variance were retained in the first 

10 - 15 PCs at DEM resolutions of 5 km, 250 m and 200 m, resp. Their base topographies closely 

resemble those obtained in this study, but arranged in a different order due to differences in the prevailing 

morphological features of East Asia, European interior mountain ranges and isolated volcanic islands. 

PC-based topography parameterisation appears to result in both statistically and physically sound results 

independent of DEM resolution and relief. 
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REGEOTOP was then applied to climate data from 12 months per 40 years (1951 – 1990) for a total of 

531, 672 and 196 stations (temperature, precipitation and PET, resp.), which to our knowledge constitutes 

the most extensive climate data collection available anywhere outside China. After regression of the 

climate variables temperature, precipitation and PET with respect to basic topographies and station 

location, residuals of the regression were analyzed in (a) variography, (b) kriging. 

Results of the variography performed for the residuals of regression demonstrate that: 

a) spatial characteristics of each variable may be detected and, 

b) climatic characteristics may also be deduced. 

Spatial characteristics of precipitation residuals have a range of 1000 – 1200 km and a high spatial 

variability. Characteristics of temperature are a larger range of about 2500 km for most months and a high 

spatial correlation with low variability over much larger distances than observed for precipitation as 

precipitation depends a lot more on local topographic forcing than temperature. With a range and spatial 

variability similar to that of precipitation, but a seasonal variation similar to that of temperature, PET may 

be considered as having an intermediate status between precipitation and temperature, as far as spatial 

variability is concerned. In addition to the spatial characteristics, climatological properties may be derived 

from the variography: seasonal variability is connected with the occurrence of the monsoons. The 

interannual variation indicates the prevalence of advective or convective precipitation events in respective 

years. It should be noted, however, that the modelling of the variograms in this paper is mostly done for 

mapping purposes and that a more detailed analysis of high-resolution structures may reveal more 

information on dependency on local relief (Herzfeld et al. 2003). 

Due to the large study domain variables (latitude, longitude and altitude) describing the small-scale 

variability of the climatic elements contributed the major part of the explained variance. For temperature 

these three variables alone were sufficient to explain more than 80% of the variance throughout the year 

(Table 2) confirming similar findings for the western Himalayas (Hormann, 1985). The contribution of 

exposition related variables (PC2 and PC3) mostly remained low as several air masses with different wind 

directions (e.g. Southeast vs. Southwest monsoons) are active in the same time of year. In contrast a 

number of complex topographic variables contribute to the explanation of the spatial organisation of both 

precipitation (Fig. 11) and PET (Fig. 12). PC7, PC8 and PC12 are the most important topographic variables 

and represent basic topographies that consist of systems of ridges, valleys and saddles (Fig. 13). 

Particularly in mountains the major part of topography-induced variability will be related to cloud 

formation and dissipitation which in turn is driven by surface flow structure and insolation differences 

over the dissected terrain. The above mentioned PCs may represent topographic features that in some way 

strongly influence airflow, cloud distribution and consequently sunshine duration. It should however be 

kept in mind that regressions are not able to detect physically-based mechanisms and that the observed 

relationship between topographic variables and observed climatic values may serve as a proxy for 

physical processes relating topographic forcing to precipitation and PET. 

Mean explained variances of precipitation and PET (calculated as observed station value vs. calculated 

grid value of the grid element containing the station) vary between 16% and 68%. Seasonal variation of 

explained variances point to the influence of different air mass characteristics that are mainly related to 
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advective vs. convective conditions. During both the summer and the winter monsoon season advection 

occurs simultaneously over large areas and leads to climatically more homogenous conditions that lend 

them easier to spatial interpolation. The major part of large differences between observed and calculated 

values have however to be attributed to the influence of the smoothed DEM data. With an average linear 

resolution of app. 25 km individual grid cells are not capable of resolving the actual topography: in the 

mountain regions of Southwest China where the altitude range within a single grid cell may surpass 3000 

m. Consequently grid cell values should not even be expected to coincide closely with values observed at 

meteorological stations within the same grid cell (Fischer et al., 2000). In their smaller, climatically more 

homogenous study regions Benichou and Lebreton (1987) and Klein (1994) were able to capture at least 

60% of the variance of monthly precipitation. Own trials in a small area of the Southwest Chinese 

Mountains indicate that in months of homogenous wind directions and strong topographic influence up to 

90% of the variance of monthly precipitation can be explained.  

 

7. DISCUSSION 

The results of this paper concern several aspects of geoscience: 

1)  an improved geomathematical method – REGEOTOP – a method combined from statistical and 

geostatistical principles (statistics and geostatistics) 

2) analysis of large data sets and cartographic representation (visualisation and GIS) 

3) production of new climate maps (climate research, ecosystem modelling, regional geography) 

It should be noted that the method can barely be separated into a “ statistical part” , “ data analysis part” , 

“ geostatistical part”  or “ geographic information systems part”  but is rather one integrated approach which 

is oriented towards the solution of a geoscientific problem. 

The parameterization of topography as shown here can serve for a multitude of applications that need to 

address the influence of topography on spatial processes. An objective and reliable numerical 

representation of topography is particularly important in mountain research to investigate relief induced 

effects on climate, vegetation distribution and snowmelt dynamics (Walsh et al. 1992). ‘Basic 

topographies’  have been shown to describe topography with high precision at grid sizes from 200 m to 25 

km and should do so at any resolution. Being conventional numeric raster data sets ‘basic topographies’  

are easily integrated in a GIS and can be merged with any other spatial data set. They are particular 

suitable for multivariate statistical analysis and allow easy classification of large areas with unsupervised 

or supervised classification procedures. 

While REGEOTOP can handle the regionalisation of large areas the results shown underline the need to 

analyze small, climatically homogenous regions for optimum results. Even though to our knowledge 

climatic data used in this study is the largest climatic data set of China outside of the PR China the station 

density is still not sufficient to analyse the climatic variability of the vast area in detail. For an estimation 

of spatial PET data of the contiguous United States which are comparable in area and latitudinal extent to 

the PR China Marks (1992) has been able to use more than 1200 stations and still commented on data 

deficiency in several parts of the US. A less restrictive data distribution policy by the Chinese authorities 

for the vast pool of climatic data of about 2000 stations available in the PR China would allow a far more 
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thorough analysis. 

Despite these shortcomings a comparison of our maps with previously published conventional maps 

(Domrös and Peng, 1988, Feng, 1993, Zhang and Lin, 1992) demonstrates the superiority of the new 

maps, both due to the increased data volume and to the mathematical and computer-based mapping 

methods. In general small scale features are virtually identical. Maps derived from topography based 

regionalization procedures can however display reliable information for regions where no climatic data is 

available due to lack of meteorological stations. This effect is particularly visible in mountainous areas 

where regional detail is far more pronounced than in conventional maps. As an example effects of large 

scale topographic features are easily visible such as the distinctive precipitation areas induced by 

orographic lifting along the small Dabashan Mts. (ca. 107E, 23N, region of maximum precipitation in 

mainland China) and windward and leeward (rain shadow) effects on the east and west slopes, resp., of 

Taiwan Mts., Taiwan. (Fig. 14). Some examples of the maps can also be accessed at 

http://esmeralda.zdv.uni-mainz.de/website/china. 

Compared to other climatic data sets that cover East Asia (Leemans and Cramer, 1991, New et al., 1999, 

New et al., 2002) or China (Baker, 1999, Prieler, 1999) this data offers high resolution time series that are 

thought to reflect topography induced variability to a much higher degree and represent the most accurate 

climate data fields available for China and East Asia today. In addition it is the only high-resolution data 

that contains Penman-Monteith evapotranspiration estimates for China. Extending the data base until 

2000, increasing station density particularly in mountain areas and increasing output resolution will result 

in further improvements in the future. 
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Figures 

Figure 1 Digital elevation model (GTOPO30) of the study domain 

Figure 2 Station distribution in the study domain. Opens squares denote temperature stations, filled 

squares precipitation stations and crosses stations with estimated PET data. The polygon outlines the 

model area. 

Figure 3 Schematic view of extraction of localized relief information from the digital elevation model and 

rearrangement of extracted data for PCA. 

Figure 4 Three-dimensional illustration of basic topographies (principal components) 1 – 6. Basic 

topographies were calculated with a DEM of 300”  resolution and a window size of 11 pixels. These 6 

basic topographies explain about 76% of the DEM variance. 

Figure 5 Spatial distributions of basic topographies 1 - 4 in the study area. For basic topography 1 (upper 

left) darker shades indicate convex forms (summits), lighter shades concave forms (depressions). DEM of 

1200”  resolution, window size 11 pixels. 

Figure 6 Variograms of monthly precipitation residuals for the month of July from 1971 to 1990. 

Figure 7a Seasonal variation of range of monthly precipitation residuals.  

Figure 7b Seasonal variation of range of monthly temperature residuals.  

Figure 7c Seasonal variation of range of monthly PET residuals.  

Figure 8 Variograms of monthly temperature residuals for the month of July from 1971 to 1990. 

Figure 9 Variograms of monthly evapotranspiration residuals for the month of July from 1971 to 1990. 

Figure 10 Results of regression analysis (top), kriging (middle) and final map (sum of regression and 

kriging, bottom) for July 1980 precipitation. Dots in the bottom map signify the stations available for this 

month. To enhance visibility of spatial differences within each map precipitation is scaled individually for 

each map. 

Figure 11 Relative frequency of contribution of independent variables to the regression equations for 

precipitation. 

Figure 12 Relative frequency of contribution of independent variables to the regression equations for 

PET. 

Figure 13 Spatial distributions of basic topographies 7 - 12 in the study area. For a description see Fig. 4. 

Figure 14 Map of mean annual precipitation (1951 –1990) averaged from monthly precipitation data 

fields. Isohyets added for clarity are based on low-pass filtered data and are approximate. 
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Tables 

Table 1 PCA results for several combinations of R and W  

 

R W PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 A B C 
1200" 5 37.2 28.8 9.1 3.7 3.4 2.2 1.9 1.5 1.2 1.2 1.1 1.0 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.6 10 12 90.4% 
1200" 11 36.7 28.8 8.3 3.6 2.9 2.2 1.7 1.2 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 16 8 85.4% 
600" 5 36.9 28.8 9.5 3.7 3.4 2.1 1.9 1.7 1.4 1.2 1.0 1.0 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.6 10 12 90.4% 
600" 11 36.5 29.4 8.2 3.3 3.0 2.1 1.5 1.2 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.4 0.4 0.3 0.3 0.3 17 8 85.2% 
300" 5 42.0 18.8 8.1 3.7 3.5 2.2 2.1 2.1 1.8 1.5 1.4 1.4 1.2 1.2 1.1 1.1 1.0 1.0 0.9 0.9 14 18 91.0% 
300" 11 39.2 21.9 6.9 3.2 2.6 1.7 1.4 1.3 1.0 0.8 0.7 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 18 9 78.3% 
150" 5 41.8 17.6 10.0 4.3 3.5 2.3 2.3 2.0 1.9 1.4 1.3 1.3 1.1 1.0 1.0 1.0 0.9 0.8 0.8 0.8 13 16 90.8% 
 

R and W denote DEM resolution and window size. PC variances marked in bold explain at least 90% of variance for the given combination of R and W. Column A gives the 

number of PCs with cumulative variances 

�

 90%, column B the number of PCs with individual variances 

�

 1% and column C the cumulative variance for PCs with individual 

variances 

�

 1%. 

 

 

 

Table 2 Variogram parameters for precipitation in two years  

 

Date Sill Nugget range model 

July 1979 5 × 104 mm² 5.5 × 10³ mm² 2500 km gaussian 

July 1980 9.5 × 10³ mm² 4 × 10³ mm² 700 km linear 

 

Note the difference of range parameter in models! 
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Table 3 Minimum, maximum and average explained variances ( %) of regression equations for the period 1951 – 1990.  

 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Temperature Min 89.5 89.7 87.6 82.9 80.2 71.2 77.1 82.9 85.1 93.2 90.8 91.4 

 Max 96.2 95.7 95.4 94.6 95.0 93.5 92.7 93.1 95.5 97.0 96.5 96.3 

 Mean 94.1 93.4 91.8 89.0 88.0 87.6 87.5 89.2 93.5 95.2 94.5 94.1 

Precipitation Min 9.1 10.6 16.6 20.8 18.4 8.7 2.8 6.5 8.0 6.2 7.7 2.1 

 Max 46.9 48.8 52.1 53.5 55.8 54.8 33.6 41.7 49.2 50.6 54.8 46.3 

 Mean 27.7 31.1 32.5 36.0 38.2 29.7 15.8 23.2 26.7 27.5 28.6 23.7 

PET Min 47.5 23.5 5.3 4.5 10.2 7.3 4.8 4.9 4.7 13.3 26.9 46.7 

 Max 83.1 80.4 38.9 40.8 57.6 57.6 48.2 53.9 52.7 58.4 74.4 83.0 

 mean 65.1 48.9 21.5 15.4 30.7 32.2 24.7 25.7 29.9 37.2 54.3 67.4 

 


